2022 EPS Hannes Alfvén Prize

Long citation

Professor Garbet’s principal accomplishments fall into six categories.
In the theory of turbulence spreading, he pointed out the possibility of bursty entrainment events, which de-localize turbulence relative to its point of excitation. This was a key initiator of the study of mesoscopic transport physics.
He has a leading role in the development of flux-driven simulations, both gyrokinetic and gyro-fluid. In particular, he inspired the building and exploitation of the GYSELA code, whose emphasis on flux-driven dynamics is unique among large gyrokinetic code efforts. The resulting significant review papers complement other notable reviews of gyrokinetics by their emphasis on physics interpretation.
He has made important contributions to internal transport barrier (ITB) physics to achieve improved confinement, where he led a Task Force of the JET programme in the early 2000s. He helped elucidate the role of resonant surfaces and magnetic shear in ITB formation. His scientific leadership was an important contribution to ITB confinement scenario development, a topic which is central to ITER.
A highlight of his excellent work clarifying and understanding the physics of ‘inward pinch’ processes relates to the up-gradient Turbulent Equipartition Pinch (TEP). The TEP, which is not thermodynamic, and is ultimately related to magnetic inhomogeneities, is the most robust and universal such process. He made important contributions to understanding the physics, by clarifying the relation between the TEP mechanism and the constraint of entropy production.
He has made important contributions to understanding plasma rotation and the transport of high-Z impurities, which radiate energy and trigger instabilities which are a major concern for the operation of magnetically confined plasmas. He unravelled synergistic interplays between collisional and turbulent transport, and highlighted mechanisms whereby experimentally observed spatial impurity distributions may be understood.
During the 1990s, he made important early contributions to understanding scrape-off layer (SOL) stability. He showed the possibility of interchange instability in the SOL, due to  its magnetic structure, which links in turn to the key ITER physics issue of SOL width.

2021 EPS Hannes Alfvén Prize

Long citation

Professor Sergei Igorevich Krasheninnikov has made vital contributions to an exceptionally broad range of aspects of a complex and multifaceted subfield of MCF plasma research: the physics of the scrape-off layer and divertor region. The processes that arise in this region at the very edge of the plasma link the hot core plasma to the solid material of the first wall. As design work in preparation for ITER has proven, these play a crucial role in the development of future magnetic fusion power plants. Studies of the scrape-off layer and divertor plasma physics are exceptionally complex, because of the many different interconnecting nonlinear processes that operate. These include classical and anomalous multicomponent plasma transport, atomic physics processes, plasma interactions with the first wall materials, and transport of plasma species in the lattice of these materials. Professor Krasheninnikov is widely acknowledged as a leading expert in this area of fusion research. His seminal ideas have helped build the foundations, and shaped the present understanding, of diverse aspects. These include the physics of “blobs”, divertor plasma detachment, the role of atomic physics processes, and the role of dust. His results on both atomic physics and dust are used well beyond magnetic fusion research. As a direct confirmation of the impact of Professor Krasheninnikov on the field, one may mention that the words “blobs” and “MAR”, which were coined by him to describe, respectively, coherent filamentary structures advected through the scrape-off layer and Molecular Assisted Recombination in divertor plasmas, are used in hundreds of magnetic fusion related papers worldwide.

2022 EPS Plasma Physics Innovation Prize

Long citation

Ane Aanesland and Dmytro Rafalskyi pioneered the use of iodine as a propellant for innovative satellite electric propulsion systems. Based on research work they originally performed at the Laboratoire de Physique des Plasmas at Ecole Polytechnique in France, they founded the company ThrustMe in 2017 to commercialize a new iodine propulsion technology. The system developed makes use of solid iodine propellant, which is then sublimated to form iodine gas. A plasma is then created using a radio-frequency inductive antenna, and positive iodine ions are extracted and accelerated with a set of high-voltage grids to produce thrust. After several years of development, the world’s first iodine electric propulsion system was launched into space on 6th November 2020 and subsequently successfully demonstrated in orbit. The results have recently been published in the leading scientific journal, Nature: less than a week after publication, the paper was already ranked within the top 5% of all articles ever tracked in terms of online media impact, and resulted in several hundred news articles and media interviews.
This new plasma-based technology is a major achievement for the space industry, and the impact of this work cannot be overstated: The electric propulsion system developed makes use of solid iodine propellant, which is sublimated to form iodine gas. A plasma is then created using a radio-frequency inductive antenna, and positive iodine ions are extracted and accelerated with a set of high-voltage grids to produce thrust. The use of iodine creates several complex challenges, which have required innovative solutions and fundamental physics investigations. Javier Martínez Martínez, as a senior engineer at ThrustMe, played a critical role by solving problems associated with corrosion, storage in space, and flow control. Within the space industry, high-performance electric propulsion systems have traditionally used xenon as the propellant. However, in contrast to iodine, xenon is very expensive, about €2500/kg; commercial production is limited; and it must be stored under very high pressure, typically one or two hundred times atmospheric pressure.
It is estimated that more than 24 000 satellites will be launched into space over the next ten years, and most will require propulsion systems. Space industry demand for xenon alone is anticipated to soon outpace supply, and it is critical that a viable replacement propellant be found. Iodine was identified over twenty years ago as a possible alternative to xenon but until now, despite being investigated by companies, space agencies, and universities around the world, no iodine propulsion system has ever been tested in space. Iodine is acknowledged as a transformative propellant. It is about a hundred times cheaper than xenon; it can be stored unpressurized as a solid, with a storage density almost three times higher than xenon; and is abundant, with global production around five hundred times higher than xenon. With growing space industry demand, and the rise of satellite mega-constellations, iodine will play a vital role in ensuring a sustainable space industry. In addition, because it can be stored as a solid, iodine enables substantial subsystem simplification and miniaturization. This allows a complete propulsion system to be provided to even very small satellites, and gives them a new capability for collision avoidance and for deorbiting to prevent space debris build-up. The high performance offered by an iodine plasma propulsion system will also enable advanced orbital manoeuvring for larger satellites, which will prove vital in the coming decades as humanity returns to the Moon and expands further into space.
It is impressive to see how Ane and Dmytro have taken their fundamental plasma research and, with the help of Javier, turned this into a product that is now available on the market and which has already gained significant commercial traction since its first demonstration in space.

EPS BPIF Board elections

The Election Committee registered 10 valid applications for the 3 open positions within the BPIF Board. At the end of the voting process, 92 bulletins were received. Among them, the Election Committee validated 85 bulletins, 7 bulletins being invalidated due to double inconsistent votes.

The results of the validated votes are given in the graph below.

The largest number of votes went to L. Gremillet, M. Kaluza and S. Depierreux. However, the Board members elected in one given round cannot be from the same country. Consequently, the Election Committee announces the final results of the elections.

Laurent Gremillet (CEA/DIF, France), Malte Kaluza (IOQ, FSU Jena, Germany) and Fabrizio Consoli (ENEA Frascati, Italy) are elected.

EPL Prizes for best research image/video and communication skills in plasma physics

2019 (all images and videos can be seen on the conference website here)

  • Images
    • M. Griener, IPP Garching (Germany) “Polychromator system for Helium Line Ratio Spectroscopy at ASDEX Upgrade”,
    • S. Smith, York University (UK) “MAST-U Super-X ELM simulation imaged by a simulated fast camera diagnostic”,
  • Videos
    • G. Blacard, CEA/Saclay (France) and LBNL (USA) “Orbital angular momentum transfer in two Laguerre Gaussian Beams”,
    • H. de Oliveira, EPFL (Switzerland) “Surviving in the Tokamak Heat”.

EPS Plasma Physics Division – Election to the Board

In accordance with the statutes of the Plasma Physics Division of the European Physical Society (EPS-PPD), there are six vacancies for incoming members of the Divisional Board. These will be filled by a process of direct election by the Individual Members of EPS, augmented by recent attendees at the Annual Conference organised by EPS-PPD.

The term of service will be four years from summer 2021 to summer 2025, renewable by mutual agreement for a second four-year term. The first meeting which newly elected Board members are expected to attend will take place in Sitges on Sunday 20th June 2021, if circumstances permit.

The continuing membership of the EPS-PPD Board 2020 to 2025 comprises:

  1. Richard Dendy (chair)
  2. Andrea Ciardi
  3. Kristel Crombé (Hon. Sec.)
  4. Andreas Dinklage
  5. Basil Duval
  6. Carlos Silva
  7. Vladimir Tikhonchuk
  8. Stefan Weber
  9. Luca Volpe – ex officio BPIF section
  10. Eva Kovacevic – ex officio LT section

The duties of Board members are:

  1. to promote scientific excellence in plasma physics by rewarding researchers who have achieved outstanding results, through the extensive portfolio of prizes administered by EPS-PPD,
  2. to sustain and coordinate the Annual Conference on plasma physics, through the formation of each year’s Programme Committee and through identifying and supporting the flow of conference venues,
  3. to attend, in person, each of the two annual Board Meetings: one at the Annual Conference, and one at a European research centre in November or December,
  4. to be (or, after election, become) an Individual Member of EPS; this typically requires a very modest fee, supplementary to membership of a national physical society.

The call for nominations, including self-nominations, of appropriate candidates, was closed in June 2020. The candidates are listed below per alphabetic order; their nomination forms can be read by clicking on their names. Note that all the candidates agree to serve if elected and understand the above objectives and conditions; in addition, their home institute agrees to support their travel expenses to all Board meetings.

The deadline for voting is November 6th. If you are allowed to vote (see above), the address for the electronic voting ballot is in your mailbox.